|
[Rivet-svn] r3346 - trunk/src/Analysesblackhole at projects.hepforge.org blackhole at projects.hepforge.orgSun Sep 11 11:51:39 BST 2011
Author: buckley Date: Sun Sep 11 11:51:39 2011 New Revision: 3346 Log: Update MC_TTBAR to be more complete, cf. the Kyoto MC school tutorial Modified: trunk/src/Analyses/MC_TTBAR.cc Modified: trunk/src/Analyses/MC_TTBAR.cc ============================================================================== --- trunk/src/Analyses/MC_TTBAR.cc Sun Sep 11 11:50:00 2011 (r3345) +++ trunk/src/Analyses/MC_TTBAR.cc Sun Sep 11 11:51:39 2011 (r3346) @@ -1,54 +1,73 @@ #include "Rivet/Analysis.hh" #include "Rivet/Projections/FinalState.hh" #include "Rivet/Projections/ChargedLeptons.hh" +#include "Rivet/Projections/MissingMomentum.hh" #include "Rivet/Projections/FastJets.hh" #include "Rivet/AnalysisLoader.hh" #include "Rivet/RivetAIDA.hh" - namespace Rivet { - class MC_TTBAR : public Analysis { + class MC_TTBAR : public Analysis { public: - MC_TTBAR() - : Analysis("MC_TTBAR") - { } + /// Minimal constructor + MC_TTBAR() : Analysis("MC_TTBAR") + { + _sumwPassedLepJetMET = 0; + _sumwPassedJetID = 0; + _sumwPassedWMass = 0; + } /// @name Analysis methods //@{ + /// Set up projections and book histograms void init() { + + // A FinalState is used to select particles within |eta| < 4.2 and with pT + // > 30 GeV, out of which the ChargedLeptons projection picks only the + // electrons and muons, to be accessed later as "LFS". addProjection(ChargedLeptons(FinalState(-4.2, 4.2, 30*GeV)), "LFS"); - addProjection(FastJets(FinalState(-4.2, 4.2, 0*GeV), FastJets::ANTIKT, 0.4), "Jets"); + // A second FinalState is used to select all particles in |eta| < 4.2, + // with no pT cut. This is used to construct jets and measure missing + // transverse energy. + FinalState fs(-4.2, 4.2, 0*GeV); + addProjection(FastJets(fs, FastJets::ANTIKT, 0.6), "Jets"); + addProjection(MissingMomentum(fs), "MissingET"); + // Booking of histograms _h_jet_1_pT = bookHistogram1D("jet_1_pT", 50, 0, 500); _h_jet_2_pT = bookHistogram1D("jet_2_pT", 50, 0, 400); _h_jet_3_pT = bookHistogram1D("jet_3_pT", 50, 0, 300); _h_jet_4_pT = bookHistogram1D("jet_4_pT", 50, 0, 200); - + _h_jet_HT = bookHistogram1D("jet_HT", 50, 0, 1000); + // _h_bjet_1_pT = bookHistogram1D("jetb_1_pT", 50, 0, 250); _h_bjet_2_pT = bookHistogram1D("jetb_2_pT", 50, 0, 250); - + // _h_ljet_1_pT = bookHistogram1D("jetl_1_pT", 50, 0, 250); _h_ljet_2_pT = bookHistogram1D("jetl_2_pT", 50, 0, 250); - + // _h_W_mass = bookHistogram1D("W_mass", 75, 30, 180); _h_t_mass = bookHistogram1D("t_mass", 150, 130, 430); _h_t_mass_W_cut = bookHistogram1D("t_mass_W_cut", 150, 130, 430); - _h_W_comb_mass = bookHistogram1D("W_comb_mass", 75, 30, 180); - _h_t_comb_mass = bookHistogram1D("t_comb_mass", 150, 130, 430); + // _h_W_comb_mass = bookHistogram1D("W_comb_mass", 75, 30, 180); + // _h_t_comb_mass = bookHistogram1D("t_comb_mass", 150, 130, 430); } void analyze(const Event& event) { const double weight = event.weight(); + // Use the "LFS" projection to require at least one hard charged + // lepton. This is an experimental signature for the leptonically decaying + // W. This helps to reduce pure QCD backgrounds. const ChargedLeptons& lfs = applyProjection<ChargedLeptons>(event, "LFS"); MSG_DEBUG("Charged lepton multiplicity = " << lfs.chargedLeptons().size()); - foreach (Particle lepton, lfs.chargedLeptons()) { + foreach (const Particle& lepton, lfs.chargedLeptons()) { MSG_DEBUG("Lepton pT = " << lepton.momentum().pT()); } if (lfs.chargedLeptons().empty()) { @@ -56,28 +75,65 @@ vetoEvent; } + // Use a missing ET cut to bias toward events with a hard neutrino from + // the leptonically decaying W. This helps to reduce pure QCD backgrounds. + const MissingMomentum& met = applyProjection<MissingMomentum>(event, "MissingET"); + MSG_DEBUG("Vector ET = " << met.vectorEt().mod() << " GeV"); + if (met.vectorEt().mod() < 30*GeV) { + MSG_DEBUG("Event failed missing ET cut"); + vetoEvent; + } + + // Use the "Jets" projection to check that there are at least 4 jets of + // any pT. Getting the jets sorted by pT ensures that the first jet is the + // hardest, and so on. We apply no pT cut here only because we want to + // plot all jet pTs to help optimise our jet pT cut. const FastJets& jetpro = applyProjection<FastJets>(event, "Jets"); const Jets alljets = jetpro.jetsByPt(); if (alljets.size() < 4) { MSG_DEBUG("Event failed jet multiplicity cut"); vetoEvent; } - _h_jet_1_pT->fill(alljets[0].momentum().pT(), weight); - _h_jet_2_pT->fill(alljets[1].momentum().pT(), weight); - _h_jet_3_pT->fill(alljets[2].momentum().pT(), weight); - _h_jet_4_pT->fill(alljets[3].momentum().pT(), weight); - const Jets jets = jetpro.jetsByPt(35*GeV); - foreach (const Jet& jet, jets) { - MSG_DEBUG("Jet pT = " << jet.momentum().pT()/GeV << " GeV"); - } - if (jets.size() < 4) { - MSG_DEBUG("Event failed jet pT cut"); + // Update passed-cuts counter and fill all-jets histograms + _sumwPassedLepJetMET += weight; + _h_jet_1_pT->fill(alljets[0].momentum().pT()/GeV, weight); + _h_jet_2_pT->fill(alljets[1].momentum().pT()/GeV, weight); + _h_jet_3_pT->fill(alljets[2].momentum().pT()/GeV, weight); + _h_jet_4_pT->fill(alljets[3].momentum().pT()/GeV, weight); + + // Insist that the hardest 4 jets pass pT hardness cuts. If we don't find + // at least 4 such jets, we abandon this event. + const Jets jets = jetpro.jetsByPt(30*GeV); + double ht = 0.0; + foreach (const Jet& j, jets) { ht += j.momentum().pT(); } + _h_jet_HT->fill(ht/GeV, weight); + if (jets.size() < 4 || + jets[0].momentum().pT() < 60*GeV || + jets[1].momentum().pT() < 50*GeV || + jets[3].momentum().pT() < 30*GeV) { + MSG_DEBUG("Event failed jet cuts"); vetoEvent; } + // Sort the jets into b-jets and light jets. We expect one hard b-jet from + // each top decay, so our 4 hardest jets should include two b-jets. The + // Jet::containsBottom() method is equivalent to perfect experimental + // b-tagging, in a generator-independent way. Jets bjets, ljets; foreach (const Jet& jet, jets) { + // // Don't count jets that overlap with the hard leptons + bool isolated = true; + foreach (const Particle& lepton, lfs.chargedLeptons()) { + if (deltaR(jet.momentum(), lepton.momentum()) < 0.3) { + isolated = false; + break; + } + } + if (!isolated) { + MSG_DEBUG("Jet failed lepton isolation cut"); + break; + } if (jet.containsBottom()) { bjets.push_back(jet); } else { @@ -86,47 +142,88 @@ } MSG_DEBUG("Number of b-jets = " << bjets.size()); if (bjets.size() != 2) { - MSG_DEBUG("Event failed b-tagging cut"); + MSG_DEBUG("Event failed post-lepton-isolation b-tagging cut"); vetoEvent; } + if (ljets.size() < 2) { + MSG_DEBUG("Event failed since not enough light jets remaining after lepton-isolation"); + vetoEvent; + } + + // Plot the pTs of the identified jets. + _sumwPassedJetID += weight; _h_bjet_1_pT->fill(bjets[0].momentum().pT(), weight); _h_bjet_2_pT->fill(bjets[1].momentum().pT(), weight); _h_ljet_1_pT->fill(ljets[0].momentum().pT(), weight); _h_ljet_2_pT->fill(ljets[1].momentum().pT(), weight); - const FourMomentum W = ljets[0].momentum() + ljets[1].momentum(); + // Construct the hadronically decaying W momentum 4-vector from pairs of + // non-b-tagged jets. The pair which best matches the W mass is used. We start + // with an always terrible 4-vector estimate which should always be "beaten" by + // a real jet pair. + FourMomentum W(10*sqrtS(), 0, 0, 0); + for (size_t i = 0; i < ljets.size()-1; ++i) { + for (size_t j = i + 1; j < ljets.size(); ++j) { + const FourMomentum Wcand = ljets[i].momentum() + ljets[j].momentum(); + MSG_TRACE(i << "," << j << ": candidate W mass = " << Wcand.mass()/GeV + << " GeV, vs. incumbent candidate with " << W.mass()/GeV << " GeV"); + if (fabs(Wcand.mass() - 80.4*GeV) < fabs(W.mass() - 80.4*GeV)) { + W = Wcand; + } + } + } + MSG_DEBUG("Candidate W mass = " << W.mass() << " GeV"); + + // There are two b-jets with which this can be combined to make the + // hadronically decaying top, one of which is correct and the other is + // not... but we have no way to identify which is which, so we construct + // both possible top momenta and fill the histograms with both. const FourMomentum t1 = W + bjets[0].momentum(); const FourMomentum t2 = W + bjets[1].momentum(); - _h_W_mass->fill(W.mass(), weight); _h_t_mass->fill(t1.mass(), weight); _h_t_mass->fill(t2.mass(), weight); - if (inRange(W.mass()/GeV, 70, 90)) { + + // // Fill histograms for all of the combinatoric 2-jet masses + // _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum()), weight); + // _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[2].momentum()), weight); + // _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[3].momentum()), weight); + // _h_W_comb_mass->fill(mass(jets[1].momentum() + jets[2].momentum()), weight); + // _h_W_comb_mass->fill(mass(jets[1].momentum() + jets[3].momentum()), weight); + // _h_W_comb_mass->fill(mass(jets[2].momentum() + jets[3].momentum()), weight); + // // Fill histograms for all of the combinatoric 3-jet masses + // _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum() + jets[2].momentum()), weight); + // _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum() + jets[3].momentum()), weight); + // _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[2].momentum() + jets[3].momentum()), weight); + // _h_t_comb_mass->fill(mass(jets[1].momentum() + jets[2].momentum() + jets[3].momentum()), weight); + + // Placing a cut on the W mass (which is well known) helps to reduce + // backgrounds. + if (inRange(W.mass()/GeV, 75, 85)) { MSG_DEBUG("W found with mass " << W.mass()/GeV << " GeV"); + _sumwPassedWMass += weight; _h_t_mass_W_cut->fill(t1.mass(), weight); _h_t_mass_W_cut->fill(t2.mass(), weight); } - // All combinatoric 2-jet masses - _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum()), weight); - _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[2].momentum()), weight); - _h_W_comb_mass->fill(mass(jets[0].momentum() + jets[3].momentum()), weight); - _h_W_comb_mass->fill(mass(jets[1].momentum() + jets[2].momentum()), weight); - _h_W_comb_mass->fill(mass(jets[1].momentum() + jets[3].momentum()), weight); - _h_W_comb_mass->fill(mass(jets[2].momentum() + jets[3].momentum()), weight); - - // All combinatoric 3-jet masses - _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum() + jets[2].momentum()), weight); - _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[1].momentum() + jets[3].momentum()), weight); - _h_t_comb_mass->fill(mass(jets[0].momentum() + jets[2].momentum() + jets[3].momentum()), weight); - _h_t_comb_mass->fill(mass(jets[1].momentum() + jets[2].momentum() + jets[3].momentum()), weight); - - /// @todo Add reconstruction of the other top from the leptonically decaying W, using WFinder } void finalize() { - // No histos, so nothing to do! + scale(_h_jet_1_pT, 1/_sumwPassedLepJetMET); + scale(_h_jet_2_pT, 1/_sumwPassedLepJetMET); + scale(_h_jet_3_pT, 1/_sumwPassedLepJetMET); + scale(_h_jet_4_pT, 1/_sumwPassedLepJetMET); + scale(_h_jet_HT, 1/_sumwPassedLepJetMET); + scale(_h_bjet_1_pT, 1/_sumwPassedJetID); + scale(_h_bjet_2_pT, 1/_sumwPassedJetID); + scale(_h_ljet_1_pT, 1/_sumwPassedJetID); + scale(_h_ljet_2_pT, 1/_sumwPassedJetID); + // scale(_h_W_comb_mass, 1/_sumwPassedJetID); + // scale(_h_t_comb_mass, 1/_sumwPassedJetID); + scale(_h_W_mass, 1/_sumwPassedJetID); + scale(_h_t_mass, 1/_sumwPassedJetID); + scale(_h_t_mass_W_cut, 1/_sumwPassedWMass); } //@} @@ -134,15 +231,24 @@ private: + // Passed-cuts counters + double _sumwPassedLepJetMET, _sumwPassedJetID, _sumwPassedWMass; + + // @name Histogram data members + //@{ + AIDA::IHistogram1D *_h_jet_1_pT, *_h_jet_2_pT, *_h_jet_3_pT, *_h_jet_4_pT; + AIDA::IHistogram1D *_h_jet_HT; AIDA::IHistogram1D *_h_bjet_1_pT, *_h_bjet_2_pT; AIDA::IHistogram1D *_h_ljet_1_pT, *_h_ljet_2_pT; AIDA::IHistogram1D *_h_W_mass; AIDA::IHistogram1D *_h_t_mass; - AIDA::IHistogram1D *_h_W_comb_mass; - AIDA::IHistogram1D *_h_t_comb_mass; + // AIDA::IHistogram1D *_h_W_comb_mass; + // AIDA::IHistogram1D *_h_t_comb_mass; AIDA::IHistogram1D *_h_t_mass_W_cut; + //@} + };
More information about the Rivet-svn mailing list |